Two reliable methods for solving the Volterra integral equation with a weakly singular kernel

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple algorithm for solving the Volterra integral equation featuring a weakly singular kernel

There are many methods for numerical solutions of integral equations. In various branches of science and engineering, chemistry and biology, and physics applications integral equation is provided by many other authors. In this paper, a simple numerical method using a fuzzy, for the numerical solution of the integral equation with the weak singular kernel is provided. Finally, by providing three...

متن کامل

Solving a Volterra integral equation with weakly singular kernel in the reproducing kernel space

Abstract In this paper, we will present a new method for a Volterra integral equation with weakly singular kernel in the reproducing kernel space. Firstly the equation is transformed into a new equivalent equation. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation un(t) to the exact solution u(t) is obtained. Some...

متن کامل

Extrapolation Methods for a Nonlinear Weakly Singular Volterra Integral Equation

In this work we consider a nonlinear Volterra integral equation with weakly singular kernel. An asymptotic error expansion for the explicit Euler’s method is obtained and this allows the use of certain extrapolation procedures. The performance of the extrapolation method is illustrated by several numerical examples.

متن کامل

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2016

ISSN: 0377-0427

DOI: 10.1016/j.cam.2016.02.004